A two-component simulation model to teach respiratory mechanics.
نویسندگان
چکیده
Interactive learning has been proven instrumental for the understanding of complex systems where the interaction of interdependent components is hard to envision. Due to the mechanical properties and mutual coupling of the lung and thorax, respiratory mechanics represent such a complex system, yet their understanding is essential for the diagnosis, prognosis, and treatment of various respiratory disorders. Here, we present a new mechanical model that allows for the simulation of respiratory pressure and volume changes in different ventilation modes. A bellow reflecting the "lung" is positioned within the inverted glass cylinder of a bell spirometer, which is sealed by a water lock and reflects the "thorax." A counterweight attached to springs representing the elastic properties of the chest wall lifts the glass cylinder, thus creating negative "pleural" pressure inside the cylinder and inflating the bellow. Lung volume changes as well as pleural and intrapulmonary pressures are monitored during simulations of spontaneous ventilation, forced expiration, and mechanical ventilation, allowing for construction of respiratory pressure-volume curves. The mechanical model allows for simulation of respiratory pressure changes during different ventilation modes. Individual relaxation curves constructed for the lung and thorax reflect the basic physiological characteristics of the respiratory system. In self-assessment, 232 medical students passing the physiology laboratory course rated that interactive teaching at the simulation model increased their understanding of respiratory mechanics by 70% despite extensive prior didactic teaching. Hence, the newly developed simulation model fosters students' comprehension of complex mechanical interactions and may advance the understanding of respiratory physiology.
منابع مشابه
Teaching in the Laboratory A two-component simulation model to teach respiratory mechanics
Kuebler WM, Mertens M, Pries AR. A two-component simulation model to teach respiratory mechanics. Adv Physiol Educ 31: 218–222, 2007; doi:10.1152/advan.00001.2007.—Interactive learning has been proven instrumental for the understanding of complex systems where the interaction of interdependent components is hard to envision. Due to the mechanical properties and mutual coupling of the lung and t...
متن کاملHow We Teach Human respiratory mechanics demonstration model
Anderson J, Goplen C, Murray L, Seashore K, Soundarrajan M, Lokuta A, Strang K, Chesler N. Human respiratory mechanics demonstration model. Adv Physiol Educ 33: 53–59, 2009; doi:10.1152/ advan.90177.2008.—Respiratory mechanics is a difficult topic for instructors and students alike. Existing respiratory mechanics models are limited in their abilities to demonstrate any effects of rib cage movem...
متن کاملFinite Element Simulation of Contact Mechanics of Cancer Cells in Manipulation Based on Atomic Force Microscopy
The theory of contact mechanics deals with stresses and deformations which arise when the surfaces of two solid bodies are brought into contact. In elastic deformation contact occurs over a finite area. A regular method for determining the dimensions of this area is Hertz Contact Model. Appearance of atomic force microscope results in introduction of Contact ...
متن کاملNumerical Simulation of Forced Convection of Nanofluids by a Two-Component Nonhomogeneous Model
Nanofluids, in which nano-sized particles (typically less than 100 nm) are suspended in liquids, have emerged as a possible effective way of improving the heat transfer performance of common fluids. In this paper a numerical study is performed to analyze the wall shear stress and heat transfer coefficient of γAl2O3-water nanofluids under laminar forced convection through a circular pipe. It is ...
متن کاملNumerical simulation of the fluid dynamics in a 3D spherical model of partially liquefied vitreous due to eye movements under planar interface conditions
Partially liquefied vitreous humor is a common physical and biochemical degenerative change in vitreous body which the liquid component gets separated from collagen fiber network and leads to form a region of liquefaction. The main objective of this research is to investigate how the oscillatory motions influence flow dynamics of partial vitreous liquefaction (PVL). So far computational fluid d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advances in physiology education
دوره 31 2 شماره
صفحات -
تاریخ انتشار 2007